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Abstract: We use holographic techniques to study SU(Nc) super Yang-Mills theory cou-

pled to Nf ¿ Nc flavours of fundamental matter at finite temperature and baryon density.

We focus on four dimensions, for which the dual description consists of Nf D7-branes in

the background of Nc black D3-branes, but our results apply in other dimensions as well.

A non-zero chemical potential µb or baryon number density nb is introduced via a nonva-

nishing worldvolume gauge field on the D7-branes. Ref. [1] identified a first order phase

transition at zero density associated with ‘melting’ of the mesons. This extends to a line

of phase transitions for small nb, which terminates at a critical point at finite nb. Investi-

gation of the D7-branes’ thermodynamics reveals that (∂µb/∂nb)T < 0 in a small region of

the phase diagram, indicating an instability. We comment on a possible new phase which

may appear in this region.
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1. Introduction

In strongly coupled, large-Nc gauge theories with a gravity dual [2, 3], Nf ¿ Nc flavours of

fundamental matter can be described by Nf D-brane probes [4] in the appropriate gravita-

tional background. At sufficiently high temperatures, the latter contains a black hole [5].

Working with Nf ¿ Nc flavours ensures that the matter branes only make a small per-

turbation to this background. Then much of the physics can be studied in the probe

approximation where the gravitational backreaction of these branes is neglected.1

This framework was recently used in [1, 7 – 9] to study the thermal properties of Nf

flavours of fundamental quarks (and scalars) in SU(Nc) super Yang-Mills theories in diverse

dimensions.2 It was shown that a universal, first order phase transition occurs at some

critical temperature Tfun. At low temperatures, the branes sit outside the black hole in

what was dubbed a ‘Minkowski’ embedding (see figure 1), and stable meson bound states

exist. In this phase the meson spectrum exhibits a mass gap and is discrete. Above some

critical temperature Tfun the branes fall through the horizon in what were dubbed ‘black

hole’ embeddings. In this phase the meson spectrum is gapless and continuous. This

large-Nc, strong coupling phase transition is therefore associated with the melting of the

mesons. In theories that undergo a confinement/deconfinement phase transition at some

temperature Td < Tfun, mesonic states thus remain bound in the deconfined phase for the

range of temperatures Td < T < Tfun.

This physics is in qualitative agreement with that of QCD, in which ss̄ and cc̄ states,

for example, seem to survive the deconfinement phase transition at Td ' 175 MeV — see [7]

1The backreaction can not be ignored in calculating the effect of the fundamental matter on hydrody-

namic transport coefficients such as the shear viscosity [6].
2Initial studies include [10, 11].
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Figure 1: Various possible D7-brane embeddings in the black D3-brane geometry for zero baryon

number density. The temperature increases from left to right. At finite nb, the Minkowski (and

critical) embeddings are not allowed — see discussion in the text.

for a more detailed discussion. It is thus interesting to ask how this physics is modified

at finite baryon density. In the presence of Nf flavours of equal mass, the gauge theory

possesses a global U(Nf) ' SU(Nf) × U(1)q symmetry. The U(1)q charge counts the net

number of quarks, i.e., the number of baryons times Nc — see appendix A for details. In

the gravity description, this global symmetry corresponds to the U(Nf) gauge symmetry

on the worldvolume of the Nf D-brane probes. The conserved currents associated to the

U(Nf) symmetry of the gauge theory are dual to the gauge fields on the D-branes. Thus,

the introduction of a chemical potential µb or a non-zero density nb for the baryon number

in the gauge theory corresponds to turning on the diagonal U(1) ⊂ U(Nf) gauge field on

the D-branes.3

In this paper we study the gauge theory

TT*fun fun

n b

T

n*b

Figure 2: Phase diagram: Baryon number nb

versus temperature T . The line of first order

phase transitions ends with a critical point at

(T ∗

fun, n
∗

b). The phase which we study is in-

trinsically unstable in the shaded (red) region.

This plot shows only a small portion of the full

phase diagram near the critical point. The ori-

gin of the axes above corresponds to (nb, T ) =

(0, 0.986 Tfun).

at constant baryon number density nb. We

find that, for any finite value of the baryon

number density, the Minkowski embeddings,

i.e., those embeddings where the probe brane

closes off above the horizon, are physically

inconsistent. Hence at finite nb, we focus

our study on black hole embeddings. De-

spite this difference with the nb = 0 case,

the first order phase transition found there

continues to exist here for small enough a

baryon number density. In this case, how-

ever, the transition is between two black

hole embeddings. For a large enough baryon

number density, there is no phase transition

as a function of the temperature. The phase

transition ceases to exist at a critical value

n∗
b. These results are summarised in figure 2.

This phase diagram also shows a shaded re-

gion where the black hole embeddings are

found to be thermodynamically unstable. While the boundary of this region shown in the

3This should not be confused with the chemical potential for R-charge (as considered in, e.g., [12, 13])

which is dual to internal angular momentum on the S5 in the gravity description.
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diagram is qualitative, we have found that the unstable region has a limited extent to the

left of the line of first order phase transitions. Hence the system must find a new stable

phase, at least, in this small region — see section 3.

We focus on four-dimensional N = 4 super Yang-Mills coupled to fundamental matter,

whose dual description consists of Nf D7-branes in the background of Nc black D3-branes,

but our results hold in other dimensions. Investigations of other holographic systems with

a chemical potential have appeared previously in [14, 15]. An overview of the paper is

as follows: In section 2, we solve for the embedding of the D7-branes in the black D3-

brane geometry. Our discussion includes a brief review of the black hole background, the

equations of motion determining the embedding, and a careful analysis of the required

boundary conditions. In this section, we also discuss the effect of finite nb on the critical

solution and self-similar scaling found at nb = 0 [1, 7]. Finally we present the results of

numerically solving for the embeddings at various values of the baryon number density.

Section 3 examines the thermal properties of the D7-branes, including their stability or

lack thereof. Section 4 concludes with a discussion of results. Appendix A presents some

details of the holographic dictionary relating the worldvolume fields describing the D7-

brane embeddings to their dual operators in the gauge theory.

2. Holographic framework

2.1 Black D3-branes

As first proposed in [2], N = 4 super-Yang-Mills (SYM) with gauge group SU(Nc) is

holographically dual to type IIB string theory on AdS5 × S5 with Nc units of RR five-

form flux. The dictionary relating the two sides of the duality equates gs = g2
YM/2π

and L4/`4
s = 2g2

YMNc ≡ 2λ, where L is the AdS curvature scale — for a review, see [3].

In the limit of large Nc and large λ, the string side of the duality reduces to (weakly

coupled) classical gravity. At a finite temperature, a black hole appears in the supergravity

background [5]. Following [1, 7], the black hole metric may be written as4

ds2 =
1

2

( %

L

)2
[
−f2

f̃
dt2 + f̃dx2

3

]
+

L2

%2

[
d%2 + %2dΩ2

5

]
, (2.1)

where

f(%) = 1 − u4
0

%4
, f̃(%) = 1 +

u4
0

%4
. (2.2)

The gauge theory temperature is then equivalent to the Hawking temperature of the black

hole horizon, determined as usual by the surface gravity T = κ/2π. Alternatively, the

latter temperature may be determined by demanding regularity of the Euclidean section

obtained through the Wick rotation t → itE. Then tE must be periodically identified with

a period β, where
1

β
= T =

u0

πL2
. (2.3)

4This metric is related to the standard presentation with the coordinate transformation %2 = u2 +
p

u4 − u4
0.
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This holographic framework allows the thermal behaviour of the strongly coupled gauge

theory to be further studied with standard semiclassical gravity techniques [16]. In partic-

ular, the entropy density can be calculated as the geometric Hawking-Bekenstein entropy

of the horizon [5, 17]5

S =
A

4GVx
=

π6

4G

L8

β3
=

π2

2
N2

c T 3 , (2.4)

where we have used 16πG = (2π)7`8
s g2

s . The parametric dependence S ∝ N2
c

reflects the

fact that the gauge theory is deconfined. Remarkably, this strong coupling result differs

from that calculated at weak coupling by merely a factor of 3/4 [17].

2.2 D7-brane embeddings

One feature of the N = 4 SYM theory appearing in the duality above is that all of the fields

transform in the adjoint representation of the SU(Nc) gauge group. Fields transforming

in the fundamental representation can be included by introducing an additional set of D-

branes on the string theory side of the duality. Following [4], we consider the decoupling

limit of the intersection of Nc D3-branes and Nf D7-branes as described by the following

array:

0 1 2 3 4 5 6 7 8 9

D3: × × × ×
D7: × × × × × × × ×

(2.5)

The resulting dual gauge theory is N = 4 super-Yang-Mills coupled to Nf N = 2 funda-

mental hypermultiplets [4] at temperature T in 3 + 1 dimensions. Assuming Nf ¿ Nc,

the decoupling limit leads to Nf probe D7-branes in the previous background (2.1), with

the intersection being parametrised by the coordinates {t, xi}. Since the D7-branes span

the 4567-directions, it is useful to introduce spherical coordinates {r,Ω3} in this space and

polar coordinates {R,φ} in the 89-directions. Denoting by θ the angle between these two

spaces we then have:

%2 = r2 + R2 , r = % sin θ , R = % cos θ , (2.6)

and

d%2 + %2dΩ2
5 = d%2 + %2

(
dθ2 + sin2 θ dΩ2

3 + cos2 θ dφ2
)

(2.7)

= dr2 + r2dΩ2
3 + dR2 + R2dφ2 . (2.8)

The analysis is simplified by taking χ = cos θ to describe the embedding of the D7-

branes. Translational symmetry in the 0123-space and rotational symmetry in the 4567-

directions motivate us to take χ = χ(%). The induced metric on the D7-branes is then:

ds2 =
1

2

( %

L

)2
[
−f2

f̃
dt2 + f̃ dx2

3

]
+

L2

%2

[
1 − χ2 + %2(∂%χ)2

1 − χ2

]
d%2 + L2(1 − χ2)dΩ2

3 . (2.9)

5We divide out by the (formally infinite) three-dimensional volume Vx of the Minkowski space in which

the gauge theory is formulated to yield the (finite) entropy density (2.4).
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We also introduce a U(1) gauge field on the worldvolume of the D7-branes. As we discuss

in detail in appendix A, in order to study the gauge theory at finite chemical potential or

baryon number density, it suffices to turn on the time component of the gauge field, At.

Again, symmetry considerations lead us to take the ansatz At = At(%). The action of the

D7-branes then becomes:

ID7 = −NfTD7

∫
d8σ

%3

4
f f̃(1 − χ2)

√

1 − χ2 + %2(∂%χ)2 − 2(2π`2
s )

2
f̃

f2
(1 − χ2)F 2

%t , (2.10)

where F%t = ∂%At is a radial electric field.

The equation of motion for At (Gauss’ law) gives

∂%


%3

2

f̃2

f

(1 − χ2)2∂%At√
1 − χ2 + %2(∂%χ)2 − 2(2π`2

s )
2 f̃

f2 (1 − χ2)(∂%At)2


 = 0 . (2.11)

In the limit that % → ∞, this equation reduces to ∂%(%
3∂%At) ' 0 and so the asymptotic

solution approaches

At ' µ − a

%2
+ · · · . (2.12)

The constants µ and a are (proportional to) the chemical potential for and the vacuum

expectation value of the baryon number density, respectively (see appendix A). The equa-

tion of motion (2.11) clearly indicates that there is a constant of motion, which we write

as

d ≡ NfTD7(2π`2
s )

2 %3

2

f̃2

f

(1 − χ2)2∂%At√
1 − χ2 + %2(∂%χ)2 − 2(2π`2

s )
2 f̃

f2 (1 − χ2)(∂%At)2
. (2.13)

With this normalization, this constant is precisely the electric displacement, d = δID7/δF%t.

Taking the large-% limit of eq. (2.13) with the asymptotic form (2.12), we find:

d = NfTD7(2π`2
s
)2 a. (2.14)

Now one could proceed to derive the equation of motion for the D7-brane profile χ(%)

from the action (2.10) and then use eq. (2.13) to eliminate At in favor of the constant

d. Instead, we first construct the Legendre transform of eq. (2.10) with respect to d to

eliminate At directly at the level of the action. The result is:

ĨD7 = ID7 −
∫

d8 σF%t
δI

δF%t
(2.15)

=−NfTD7

∫
d8σ

%3

4
f f̃(1−χ2)

√
1−χ2+%2(∂%χ)2

[
1+

8 d2

(2π`2
s
NfTD7)2%6f̃3(1−χ2)3

]1/2

.

The gauge field equations resulting from this Legendre transform are simply ∂%d = δĨD7/δAt

and ∂%At = −δĨD7/δd. The first of these reproduces the fact that d is a fixed constant and

we will return to the second one below.
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Before deriving the equation of motion for the D7-brane profile χ(%), it is convenient

to introduce dimensionless quantities:

ρ =
%

u0

, d̃ =
d

2π`2
s u

3
0
NfTD7

. (2.16)

The χ equation from eq. (2.15) can then be written as

∂ρ

[
ρ5f f̃(1−χ2)χ̇√

1−χ2+ρ2χ̇2

√

1+
8d̃2

ρ6f̃3(1−χ2)3

]
= − ρ3f f̃χ√

1−χ2+ρ2χ̇2

√

1+
8d̃2

ρ6f̃3(1−χ2)3
(2.17)

×
[
3(1−χ2)+2ρ2χ̇2−24d̃2 1−χ2+ρ2χ̇2

ρ6f̃3(1−χ2)3+8d̃2

]
,

where the dot denotes derivatives with respect to ρ, i.e., χ̇ = ∂ρχ. With ρ → ∞, this

equation becomes at leading order: ∂ρ(ρ
5χ̇) ' −3ρ3 χ. Hence asymptotically the profile

behaves as

χ =
m

ρ
+

c

ρ3
+ · · · , (2.18)

where the dimensionless constants m and c are proportional to the quark mass and con-

densate, respectively [1, 7]. The precise relations are given in appendix A.

Returning to the gauge field, we begin by introducing a convenient dimensionless po-

tential and chemical potential:

Ãt =
2π`2

s

u0

At , µ̃ =
2π`2

s

u0

µ . (2.19)

Then as described above, (2.15) yields the following equation

∂ρÃt = 2d̃
f2

√
1 − χ2 + ρ2χ̇2

√
f̃(1 − χ2)[ρ6f̃3(1 − χ2)3 + 8d̃2]

. (2.20)

Integrating yields the potential difference between two radii,

Ãt(ρ) − Ãt(ρ0) = 2d̃

∫ ρ

ρ0

dρ
f
√

1 − χ2 + ρ2χ̇2

√
f̃(1 − χ2)[ρ6f̃3(1 − χ2)3 + 8d̃2]

. (2.21)

We will see below that all embeddings of interest extend down to the horizon at ρ = 1,

so ρ0 = 1 provides a convenient reference point. Further we set Ãt(ρ = 1) = 0 by the

following argument: The event horizon of the background (2.1) can be characterized as

a Killing horizon, which implies that it contains the bifurcation surface where the Killing

vector ∂t vanishes [18]. If the potential Ã as a one-form is to be well defined, then Ãt must

vanish there. Hence we can use (2.21) to calculate the chemical potential, i.e., Ãt(∞), as

µ̃ = 2d̃

∫ ∞

1

dρ
f
√

1 − χ2 + ρ2χ̇2

√
f̃(1 − χ2)[ρ6f̃3(1 − χ2)3 + 8d̃2]

. (2.22)
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2.3 Near-horizon embeddings

An important role in [1, 7] was played by the analysis of the probe brane embeddings in

the near-horizon region of the geometry (2.1). In this section we will see how this analysis

is affected by the presence of the electric field on the D7-branes. In fact we will generalize

the analysis to consider probe Dq-branes in a black Dp-brane background, along the lines

of [1]. These calculations will lead to two main conclusions. The first one is that smooth

Minkowski embeddings are unphysical for any non-zero baryon density. The second one is

that we expect the first order phase transition found in [1, 7] to persist for small values of

the baryon density, but to disappear for sufficiently large densities.

In order to focus on the near-horizon region, we set

% = u0 +
L

u0

z , θ =
y

L
, (2.23)

and expand the metric (2.1) to lowest order in z, y. This yields Rindler space together with

some spectator directions which we omit since they will play no role in the following:

ds2 = −(2πT )2z2dt2 + dz2 + dy2 + y2dΩ2
n + · · · . (2.24)

We recall that T = u0/πL2. In (2.24) we have introduced an integer n equal to the

dimension of the internal sphere wrapped by the probe Dq-branes. For the D3/D7 system

n = 3, but as stated above our analysis in this section will apply to more general Dp/Dq

systems, for which possibly n 6= 3; for example, n = 2 for the D4/D6 system of [11]. The

horizon is of course at z = 0. The coordinates z and y are the near-horizon analogues of

the global coordinates R and r in (2.8), respectively.

In order to describe the embedding of the Dq-branes, we choose the static gauge for

all their coordinates except the radial coordinate on the brane, which we denote as σ. The

Dq-brane embedding may then be described parametrically as: z = z(σ), y = y(σ). We

modify the analysis of [1] by adding a radial electric field E ≡ `2
sȦt/T , where the dot

denotes differentiation with respect to σ. For simplicity, in this section we will ignore the

overall normalisation of the Dq-branes action and take ID7 ∝
∫

dσL, where

L = −yn
√

z2(ż2 + ẏ2) − E2 . (2.25)

This action is homogeneous of degree 2 + n under the rescaling

z → αz , y → αy , E → α2E , (2.26)

which means that the equations of motion will be invariant under such a transformation.

Recall that as first described in [19], this scaling symmetry was a key ingredient for self-

similarity of the brane embeddings in [1, 7]. However, in the present case with E 6= 0,

the symmetry does not act within the family of embedding solutions with a fixed electric

field (or rather fixed d — see eq. (2.28) below). Hence we can not expect to find exactly

the same self-similar behaviour for branes supporting a fixed chemical potential or baryon

density. However, we argue below that the embeddings should behave in approximately

the same way at least where the gauge field is a small perturbation on the Dq-brane.

– 7 –
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As in the previous subsection, it is convenient to work with the electric displacement

d =
∂L
∂E

=
ynE√

z2(ż2 + ẏ2) − E2
, (2.27)

which is constant by virtue of Gauss’ law. This is the near-horizon analogue of the quantity

with the same name introduced in the previous subsection.6 Note that under the scaling

(2.26) d transforms as

d → αnd . (2.28)

Inverting the relation (2.27) above, one finds

E2 =
d2z2(ż2 + ẏ2)

d2 + y2n
. (2.29)

It is also useful to note the relation

√
z2(ż2 + ẏ2) − E2 = ynz

[
ż2 + ẏ2

d2 + y2n

]1/2

. (2.30)

To eliminate E in favour of d and obtain a functional for y(σ) and z(σ), we perform a

Legendre transformation by defining

L̃ = L − Ed = −z
√

ż2 + ẏ2
√

d2 + y2n , (2.31)

in analogy with (2.15). It is easily verified that the equations of motion obtained from L̃
are the same as those obtained by first varying L and then using eq. (2.29) to eliminate E.

We can conclude from eq. (2.29) that Minkowski embeddings which close off smoothly

at the y-axis, such as those considered in [1, 7], are unphysical if d 6= 0. These embeddings

are most appropriately described in the gauge y = σ, and they are characterised by the

condition that the brane reaches y = 0 at some finite z = z0 > 0. For the brane geometry

to be smooth there, we must impose the boundary condition ż(0) = 0. Eq. (2.29) then

yields E2 = z2
0

at y = 0. Now even though E remains finite, the tensor field Edy ∧ dt is ill-

defined at the origin and so one should conclude that these configurations are singular. This

singularity is made clearer by considering the electric displacement d which also remains

constant at the origin. However, one should note that as defined in eq. (2.27) d is actually

a tensor density and so the norm of the associated tensor field is
∣∣∣ d√−g

∂
∂y

∂
∂t

∣∣∣
2

∼ d2/y2n,

which clearly diverges at the origin. The physical reason why Minkowski embeddings are

inconsistent is, of course, that the radial electric field lines have nowhere to end if the

brane closes off above the horizon. This makes it clear that, although we have obtained

this result in the near-horizon approximation, the same conclusion follows from an analysis

in the full geometry (2.1).

For D-branes, an electric field on the worldvolume can also be associated with fun-

damental strings ‘dissolved’ into the the D7-brane [20] — see also the discussion around

eq. (A.3). Hence the above statement that the electric field lines have nowhere to end

6Note, however, that they differ in their normalisation.
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can also be viewed as the fact that the strings have nowhere to end if the brane closes

off. However, rather than simply viewing the Minkowski embeddings as unphysical, this

point of view lends itself to the interpretation that these embeddings by themselves are

incomplete. That is, one could imagine constructing a physical configuration by attaching

a bundle of fundamental strings to the brane at y = 0 and letting these stretch down to

the horizon. The strings resolve the singularity in the electric field since they act as point

charges which are the source of this field. However, in such a configuration, the strings and

the brane must satisfy a force balance equation at the point where they are connected. It

is clear that if the brane closes off smoothly with ż(0) = 0, then they can not exert any

vertical force in the z direction to balance the tension of the strings and so this can not be

an equilibrium configuration. One might then consider ‘cuspy’ configurations which close

off with a finite ż(0) but still at some z = z0 > 0. In this case, the branes exert a vertical

force and so one must examine the configuration in more detail to determine if the two

forces can precisely balance. This analysis requires a more careful treatment of the normal-

isation of the brane action and the fields than we have presented here. Hence we defer the

detailed calculations to the next subsection where we will examine the D7-branes in more

detail. However, let us state the conclusion here: no Minkowski embeddings can achieve

an equilibrium for any (finite) value of ż(0). Therefore we discard Minkowski embeddings

for the rest of our analysis in the following.

Hence we now turn to consider black hole embeddings which intersect the horizon.

Since these reach the horizon z = 0 at some y = y0 they are conveniently described in the

gauge z = σ. The appropriate boundary condition in this case is then ẏ(0) = 0, and the

equation that follows from L̃ is

(y2n + d2)
[
zyÿ + (1 + ẏ2)yẏ

]
− y2n(1 + ẏ2)nz = 0 . (2.32)

In view of this equation it is clear that we should expect two qualitatively different be-

haviours for solutions with yn
0 À d and yn

0 ¿ d. In the first case, it is easy to see that

yn À d all along the solution, and so we effectively recover the equations of motion for

d = 0 studied in [1, 7], and therefore oscillatory behaviour around a critical solution for

large y:

y ' √
n z + ξ , ξ =

T−1

(Tz)
n
2

[a sin(α log Tz) + b cos(α log Tz)] , (2.33)

where a, b are determined by y0. As shown in [1], this oscillatory behaviour eventually

leads to the property that the quark condensate is multi-valued as a function of the quark

mass, and hence to a first order phase transition (see figure 5 and the discussion in the

next subsection). We thus expect a similar transition if yn
0 À d.

Incidentally, note that, unlike in the case d = 0, here the ‘critical solution’ y =
√

n z

is not an exact solution of eq. (2.32) but only an approximate solution for large y. In

particular, there is no exact solution of the form y ∝ z that just touches the horizon except

the y = 0 solution. Note also that for black hole embeddings eq. (2.29) gives E ∼ z as

z → 0, leading to a well defined tensor field at the horizon z = 0.

We now turn to the case yn
0 ¿ d, for which the equation of motion (2.32) reduces to

zÿ + (1 + ẏ2)ẏ ' 0 , (2.34)
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whose exact solution is

ẏ =
z1√

z2 − z2
1

, (2.35)

y = y0 + z1 log

(
z +

√
z2 − z2

1

)
c , (2.36)

where y0 and z1 are integration constants. Recall that the boundary conditions should be

y(z = 0) = y0 and ẏ(z = 0) = 0. It is impossible to satisfy these conditions with the

logarithm in eq. (2.36). It is also clearly seen in eq. (2.35) that the general solution is

problematic (at z = z1) unless z1 = 0. Hence the only physical solution in this regime is

precisely the constant solution: y = y0.

Further, we note that the embedding starts very near the horizon with y = y0 where

yn
0
¿ d and so we ask how it makes a transition to some more interesting profile of the

full equation (2.32) far from the horizon. The point is that the term ny2nz will eventually

grow large and require y to deviate from a constant. Quantitatively, one finds that the

transition occurs for z ∼ y0 (d/yn
0 ) where the leading solution has the form

y = y0 +
n

4

(
yn
0

d

)2 z2

y0

+ · · · . (2.37)

Hence we see the O(z2) correction to the constant embedding is enormously suppressed in

this regime yn
0
¿ d. Note that at z ∼ y0 (d/yn

0
), the second term is comparable to the first

and so the Taylor series is breaking down. However, at this point, we still have yn ¿ d

and ẏ ¿ 1. In summary, the solution in this regime is a long spike that emanates from the

horizon almost vertically, resembling a bundle of strings.

The analysis above thus leads to the following physical picture. If d is small enough,

then there is a set of embeddings in the near-horizon region for which yn
0

À d, whose

physics is similar to that of the d = 0 case. In particular, we expect a first order phase

transition to occur as a function of the temperature. As d increases, the region where the

condition yn
0 À d holds gets pushed outside the regime in which the near-horizon analysis

is applicable, suggesting that the phase transition as a function of temperature should

cease to exist for sufficiently large d. This is precisely what the phase diagram in figure 2

confirms. In contrast, the condition yn
0
¿ d can always be met in the near-horizon region,

indicating that solutions for which the part of the brane near the horizon behaves as a

narrow cylinder of almost constant size, resembling a bundle of strings, exist for all values

of d. This is also confirmed by our numerical analysis in the full geometry (as illustrated

in figure 3), since such type of embeddings can always be realised, for any fixed d, by

increasing the quark mass (or equivalently by decreasing the temperature). In the next

subsection we analyse some properties of these embeddings more closely.

2.4 Strings from branes

The near-horizon analysis above revealed the existence of solutions for which the brane

resembles a long narrow cylinder that emanates from the horizon. One’s intuition is that

this spike represents a bundle of strings stretching between the asymptotic brane and the
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black hole. Examples in which fundamental strings attached to a D-brane are described as

an electrically charged spike solution of the DBI action are well known in flat space [21], in

AdS space [22] and in other brane backgrounds [23]. Here we would like to formalise this

intuition by investigating the core region of our D7-brane embeddings in more detail. This

analysis allows us to investigate the boundary conditions for the Minkowski-like embeddings

in detail.

We begin by rewriting the Legendre-transformed action (2.15) as

ĨD7 = −TD7√
2

∫
d8σ

f

f̃1/2

√

1 +
%2(∂%χ)2

1 − χ2

[
d2

(2π`2
s
TD7)2

+
N2

f

8
%6f̃3(1 − χ2)3

]1/2

(2.38)

Now recall that χ = cos θ — see eq. (2.7) — and consider the last factor in the integrand.

If the embedding is very near the axis, i.e., χ ' 1, then the second contribution in this

factor can be neglected and eq. (2.38) becomes

ĨD7 ' −nqVx
1

2π`2
s

∫
dt d%

f

(2f̃)1/2

√
1 + %2(∂%θ)2

= −nqVx
1

2π`2
s

∫
dt d%

√
−gtt (g%% + gθθ(∂%θ)2) (2.39)

where we have used the relation (A.4) between d and the density of strings nq. We recognize

the result above as the Nambu-Goto action for a bundle of fundamental strings stretching

in the % direction but free to bend away from θ = 0 on the S5. It is interesting to note

that the term that was dropped provides precisely the measure factor associated with the

xi and S3 directions in the limit where the d term vanishes (or is small). In this sense then,

the D7-brane forgets about its extent in those directions.

Let us consider the boundary conditions for the configurations which reach the axis

θ = 0 at some finite %, i.e., for Minkowski-like embeddings. These embeddings would in

general have a cusp if ∂%θ remains finite at θ = 0 (a smooth embedding would correspond

to ∂%θ → ∞). As discussed in the previous subsection, to produce a potentially physical

configuration, we would attach a bundle fundamental strings to the tip of the brane (with

precisely the density nq). However, to produce a consistent static configuration, there must

be a balance between the forces exerted by these external strings and the brane along the

%-direction. The effective tension of the branes can be evaluated in many ways, but here

we consider the calculation:

T%% =
2√−g

δĨD7

δg%%
' nqVx

1

2π`2
s

g%%√
1 + g%%gθθ(∂%θ)2

. (2.40)

Now if we wish to calculate the effective tension for a bundle of strings smeared out of the

xi-directions with density nq, the same calculation would apply since eq. (2.39) is precisely

the fundamental string action. However, these strings would lie vertically along the axis

and so we would evaluate eq. (2.40) with ∂%θ = 0. Hence for a cusp with any non-zero

∂%θ, the effective tension (2.40) is less than that of the vertical strings. Hence none of

these Minkowski-like embeddings can achieve an equilibrium with the attached strings for
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any finite value of ∂%θ.7 We might consider these configurations as the initial data in a

dynamical context. Then, given the results above, we see that the strings will pull the

brane down the axis to the horizon — a similar discussion appears in a different context

in [24]. In any event, we will not consider any of these Minkowski-like embeddings in the

remainder of our analysis.

Now let us consider the black hole embeddings that arise from eq. (2.39). In fact,

the equations resulting from this action were studied as (a special case of) the string

configurations describing Wilson loops in the AdS/CFT [25]. In general these solutions are

loops which begin and end at large %. Hence these are inappropriate in the present context.8

In this context, at finite temperature, there is another class of string configurations, namely

strings that fall straight into the horizon, which display the screening of the quark-antiquark

potential. Using this experience, we conclude that the only solutions for eq. (2.39) which

reach the horizon will be the constant configurations θ = θ0. Hence, as we saw in the near

horizon analysis, the black hole embeddings near the θ = 0 axis are long narrow cylinders

of constant (angular) cross-section.

One should ask how far out these constant profiles are valid as approximate solutions

of the full equations derived from eq. (2.38). The approximation that allowed us to derive

eq. (2.39) required d̃1/3 À ρ sin θ, assuming ρ À 1. Hence the constant solutions θ = θ0

should remain approximate solutions out to ρtransition ∼ d̃1/3/θ0 for small θ0 ¿ 1. Beyond

this radius we expect the profile should expand out and approach an asymptotically flat

brane. However, we can push this transition out to an arbitrarily large radius by taking

θ0 → 0. This again suggests that with d 6= 0, there are D7-brane embeddings which reach

the horizon no matter how far the (asymptotic) brane is from the black hole. We will verify

this result with numerical investigations of the full solutions for the action (2.38) in the

next subsection.

Our analysis of the static D7-brane profiles near χ ∼ 1 have confirmed the idea that the

embeddings develop a narrow spike that behaves like a bundle of strings stretching between

the asymptotic brane and the black hole. It is interesting to extend this idea further by

investigating the dynamical properties of these spikes. As a step in this direction, let

us consider our framework with the more general ansatz: χ(%, t) and At(%).9 After a

straightforward calculation the Legendre-transformed action becomes

ĨD7 = −TD7

∫
d8σ

f

(2f̃ )1/2

√

1+%2(∂%θ)2− 2L4

%2

f̃

f2
(∂tθ)2

[
d2

(2π`2
s
TD7)2

+
N2

f

8
%6f̃3 sin6 θ

]1/2

.

(2.41)

As above, we restrict our attention to the embeddings when they are very close to the

axis θ ' 0. In this regime, the second contribution in the last factor can be neglected and

7The same conclusion applies for the general Dq/Dp-brane configurations discussed in subsection 2.3.
8If we use only a portion of these solutions, i.e., the configuration is cut-off before reaching the loop’s

minimum %, the profile describes the cuspy configurations discussed above.
9The symmetries of the problem ensure that this ansatz leads to a consistent solution.
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eq. (2.41) becomes

ĨD7 ' −nqVx
1

2π`2
s

∫
dt d%

f

(2f̃)1/2

√

1 + %2(∂%θ)2 − 2L4

%2

f̃

f2
(∂tθ)2 (2.42)

Once again we recognize this result as the Nambu-Goto action for a bundle of fundamental

strings stretching in the %-direction with dynamical fluctuations in the θ-direction. Hence

we are beginning to see that not just the static properties of the spikes, such as the tension,

but also their dynamical spectrum of perturbations matches that of a collection of strings;

similar results have been seen for the dynamics of the BIon spikes on branes in asymptot-

ically flat spacetime [26]. In this sense we see that, although no fundamental strings are

initially manifest, the D7-brane spectrum still captures the presence of these strings. This

is a satisfying result since these strings stretching between the horizon and the asymptotic

D7-branes are dual to the quarks in the field theory, for which we are turning on chemical

potential µ. It would be interesting to investigate these issues in more detail.

2.5 Numerical embeddings

We now return to the detailed analysis of the D7-brane embeddings in the black D3-brane

background. In general, it is not feasible to solve analytically eq. (2.17), which determines

the profile χ(ρ), so we resorted to numerics. We numerically integrated eq. (2.17), specifying

boundary conditions on the horizon ρmin = 1: χ(1) = χ0 for various 0 ≤ χ0 < 1 and

∂ρχ|ρ=1 = 0. In order to compute the constants m, c corresponding to each choice of

boundary condition at the horizon, we fitted the solutions to the asymptotic form (2.18).

Several representative D7-brane profiles are depicted in figure 3. In particular, we see

explicitly here the formation of long narrow spikes reaching down to the horizon as χ0

approaches 1 (or R approaches 1 on the horizon).

We can make the appearance of these

0.5 1 1.5 2 2.5 3
r

0.25

0.5

0.75

1

1.25

1.5

1.75

2

R

Figure 3: Profiles of various D7-brane em-

beddings in the D3-brane background for d̃ =

10−4/4. The black circle represents the horizon.

spikes quantitative here by examining how

varying boundary the condition χ0 changes

the quark mass m — recall that the lat-

ter is proportional to the distance which the

branes reach along the vertical axis of fig-

ure 3. Figure 4 shows plots of m versus

χ0 for d̃ = 10−4/4 and 1/4. Note that in

both cases, as χ0 → 1, the quark mass is

diverging. Hence with d̃ 6= 0, there are D7-

brane embeddings which reach the horizon

no matter how large the (asymptotic) sepa-

ration between the brane and the black hole

becomes. Since m ∝ Mq/T as shown in eq. (A.2), m → ∞ corresponds to T → 0 for a fixed

quark mass Mq. Hence the previous result is equivalent to saying that the D7-branes inter-

sect the horizon for all values of T when d 6= 0. Contrast this with the d̃ = 0 case, where

embeddings of the D7-branes which intersect the horizon (i.e., black hole embeddings) only
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Figure 4: Quark mass m versus boundary condition χ0 on the horizon for (a) d̃ = 10−4/4 and (b)

d̃ = 1/4.

existed above some minimum temperature [1, 7]. At low temperatures the D7-branes were

described by embeddings which smoothly closed off above the horizon (i.e., Minkowski

embeddings). For nonzero chemical potential or nonzero baryon density, there are black

hole embeddings corresponding to all temperatures in the gauge theory. For small tem-

peratures, or large quark mass, most of the brane is very far away from the horizon with

only a very thin long spike extending down to touch the horizon. Far from the black hole,

this embedding would look very much like a Minkowski embedding in the low temperature

phase of d̃ = 0. It differs only by the narrow spike going down to touch the horizon.

Figures 5, 6 and 7 illustrate the dependence of the quark condensate c on the tem-

perature T . Several such plots of c versus T with varying degrees of resolution are given

in figure 5 for small values of the baryon density: d̃ = 0, 10−6/4 and 10−4/4. In the first

two plots, the differences between the curves is virtually indiscernable. In particular then,

they all begin to show the spiralling behaviour that was characteristic of the self-similar

scaling discovered for d̃ = 0 [1, 7]. Of course, section 2.3 argued that these spirals should

persist to a certain level at small d̃. Note that in the highest resolution plot (the last one

in figure 5), one sees that for d̃ = 10−4/4 the small scale spirals have been eliminated. In

any event, the plots in figure 5 explicitly demonstrate that, for small baryon density d̃, the

black hole embeddings are mimicking the behaviour of both the black hole and Minkowski

branches of the theory at d̃ = 0. Hence certain features of the physics will be continuous

between the theories with vanishing and non-vanishing baryon number density. In partic-

ular, the spiralling or rather the multi-valuedness of c indicates there will be a first order

phase transition and so the ‘melting’ transition found in [1] persists to small values of the

baryon density.

As d̃ is increased, the self-similar, spiralling behaviour becomes less and less pronounced

and eventually c becomes a single-valued function of T/M̄ . To the best numerical accuracy

that we could achieve, the critical value at which the phase transition disappears in d̃∗ =

0.00315. Figure 6 shows the c in the vicinity of the transition around this critical value.

For d̃ = 0.0031, the curve shows a slight S-shape and so a small first order phase transition

would still occur. For the critical value d̃∗ = 0.00315, the curve is monotonic but with
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Figure 5: Quark condensate c versus temperature T/M̄ for d̃ = 0, 10−6/4 and 10−4/4 on the

black, red and blue curves, respectively. At low resolution, these curves are all nearly identical and

display a similar spiralling behaviour.
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Figure 6: Quark condensate c versus temperature T/M̄ near the critical point. The solid black

curve corresponds to the critical baryon density d̃∗ = 0.00315. The dashed curves above (blue) and

below (red) correspond to d̃ = 0.0031 and 0.0032, respectively.

a singular slope near the center. In this case, the phase transition would be reduced to

second order. Finally for d̃ = 0.0032, the curve is monotonic with a finite slope everywhere

and so the phase transition has disappeared.

For completeness, we also show the behaviour of the quark condensate at much larger

values of the baryon density in figure 7. Figure 7a corresponds to d̃ = 1/4 where some
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Figure 7: Quark condensate c versus temperature T/M̄ for (a) d̃ = 1/4 and (b) d̃ = 10.

interesting structure still persists around T/M̄ ∼ 1, which was where c shows a minimum

in figure 5 at smaller densities. Figure 7b corresponds to d̃ = 10, where c has become a

monotonically increasing (towards zero) function of T .

We integrated (2.22) numerically to solve for the chemical potential. Plots of µ̃ versus

temperature all show an apparent divergence as T/M̄ → 0, as illustrated in figure 8a.

However, this behaviour is misleading as we now explain. As discussed in the previous

subsections, a common feature of the D7-brane embeddings at small temperatures is the

long narrow spike close to the θ = 0 axis. This spike dominates eq. (2.22) for small T/M̄

and so the latter formula can be simplified to

µ ' 1√
22π`2

s

∫ u0m

u0

d% f/f̃1/2 ' Mq , (2.43)

where we have restored the dimensions of the chemical potential and the radial coordinate.

Hence in this limit, the chemical potential is essentially given by the quark mass, as one

might have expected. Hence the divergence in figure 8a arises simply because µ̃ ∝ µ/T , as

shown in eq. (A.10). This spurious behaviour is eliminated by plotting µ/Mq =
√

2µ̃/m, as

shown in figure 8b. The latter plot exhibits the small temperature limit µ/Mq → 1 for T

approaching zero, as is implied by eq. (2.43). Note that if one calculates µ in the vicinity

of the phase transition, it shows a multi-valuedness similar to that shown for the quark

condensate above.

3. D7-brane thermodynamics: free energy, entropy and stability

We now wish to study the thermal properties of the fundamental hypermulitplets at finite

baryon number. Our holographic framework translates this question into one of investi-

gating the thermal contributions of the D7-branes on the gravity side. As usual, we use

the standard technique [16] of Wick rotating the time direction. The Euclidean time circle

of the black D3-brane background then becomes the thermal circle in a finite temperature

path integral, and the leading contribution to the free energy is determined by evaluating

the Euclidean action. As we are interested in the contributions of the fundamental matter,
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Figure 8: Chemical potential for d̃ = 10 versus temperature displayed as: (a) µ̃ and (b) µ/Mq.

we only study the action of the D7-branes. Although evaluating the bulk brane action

leads to a formally divergent result, the AdS/CFT correspondence provides a prescription

to remove these divergences: One introduces a finite-radius UV cut-off and a set of bound-

ary counterterms to renormalise the action [27]. This approach for the branes is completely

analogous to the same calculations which are performed for the gravity background [28].

This holographic renormalisation of the D7-brane action was discussed in more detail in

refs. [1, 7], which we follow closely in this section.

We begin by writing the Euclidean action for the D7-branes in terms of dimensionless

quantities, introduced in section 2.2, as10

Ibulk =

∫
d8σ LE = N

∫
d8σ ρ3f f̃(1 − χ2)

√

1 − χ2 + ρ2χ̇2 − 2f̃

f2
(1 − χ2) ˙̃A2

t , (3.1)

where N is the normalisation constant introduced in [1, 7]:11

N =
2π2NfTD7u

4
0

4T
=

λNcNfT
3

32
. (3.2)

The normalisation factor illustrates the fact that the leading contributions of the funda-

mental matter are proportional to Nc Nf, in accord with the large-Nc counting rules of the

gauge theory. Note then that these contributions are subleading to those of the adjoint

fields which scale as N2
c — see, for example, the entropy density in eq. (2.4).

As commented above, this bulk action (3.1) contains large-ρ, UV divergences. Fortu-

nately, however, these are the same as in the absence of the gauge field, and therefore no

new counterterms are required beyond those derived in refs. [1, 7], which take the form

Ibound

N = −1

4

(
ρmax

4 − 2m2ρmax
2 + m4 − 4mc

)
, (3.3)

10For simplicity, we have left At untouched here rather than introducing a Wick rotated potential AtE
=

−i At. As is well-known, such a Euclidean potential would have to be treated as an imaginary field in the

present context because the chemical potential and particle density must remain real constants — see, e.g.,

[12].
11Note that this constant does not include the three-volume Vx along the gauge theory directions. Rather

in this section we will divide out these factors everywhere and so all extensive quantities are actually densities

per unit volume; for example, (3.1) is the Euclidean action density.
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where ρmax is the UV cut-off. The regularised D7-brane action is then IE = Ibulk + Ibound.

It can most simply be written as:

IE

N = G(m) − 1

4

[
(ρmin

2 − m2)2 − 4mc
]

, (3.4)

where G(m) is the integral:

G(m) =

∫ ρmax

ρmin

dρ


ρ3f f̃(1 − χ2)

√

1 − χ2 + ρ2χ̇2 − 2f̃

f2
(1 − χ2) ˙̃A2

t − ρ3 + m2ρ


 . (3.5)

The limit ρmax → ∞ may now be taken, since this integral converges.

As usual, we wish to identify the action with a thermodynamic free energy. However,

in the present case, there are various possibilities depending on the ensemble under con-

sideration, i.e., the Gibbs free energy for the grand canonical ensemble with fixed µ and

the Helmholtz free energy for the canonical ensemble with fixed nb. Now experience with

similar calculations for charged black holes, e.g., [12], suggests that the Gibbs free energy

is given by the Euclidean action while the Helmholtz free energy is associated with the

Legendre transform of IE. Since we wish to work with fixed charge, we would want to work

with the latter.

In the following, we confirm the above expectations. Using the equations of motion,

the variation of the action reduces to a boundary term:

δIE =

[
∂LE

∂χ̇
δχ +

∂LE

∂ ˙̃At

δÃt

]ρmax

ρmin

. (3.6)

Combining this with the variation of the boundary action Ibound (3.3) yields

δIE = −2N c δm − nq

T
δµ (3.7)

where nq was defined in (A.4). Recalling that m = M̄/T we see that the natural thermody-

namic variables of the Euclidean action are the temperature T and the chemical potential

µ. Hence we must identify IE = βW , where W (T, µ) is the thermodynamic potential in

the grand canonical ensemble, namely the Gibbs free energy.

Since we wish to work at fixed charge density, i.e., in the canonical ensemble,we perform

a Legendre by defining

ĨE = IE +
nq µ

T
, (3.8)

which of course is a function of the temperature and the charge density:

δĨE = −2N c δm +
µ

T
δnq . (3.9)

We thus identify ĨE = βF where F (T, nq) is the Helmholtz free energy.

The bulk part of ĨE is of course the Euclidean analogue of (2.15):

Ĩbulk

N =

∫
dρ ρ3 f f̃(1 − χ2)

√
1 − χ2 + ρ2χ̇2

[
1 +

8d̃2

ρ6f̃3(1 − χ2)3

]1/2

. (3.10)
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Figure 9: Legendre transform of the action, ĨD7, versus temperature for d̃ = 10−4/4. The phase

transition temperature is denoted by the dotted vertical line in the second plot.

Since the divergences of this bulk action are the same as those of the d̃ = 0 case, the

analogous expression to eq. (3.4) is now

ĨE

N = G̃(m) − 1

4

[
(m2 − 1)2 − 4mc

]
, (3.11)

where G̃(m) is the integral:

G̃(m) =

∫ ∞

1

dρ

[
ρ3f f̃(1−χ2)

√
1 − χ2 + ρ2χ̇2

(
1+

8d̃2

ρ6f̃3(1 − χ2)3

)1/2

−ρ3+m2ρ

]
. (3.12)

In both of these expressions, we have replaced ρmin = 1 since all of the embeddings which

we consider terminate at the horizon.

We evaluated the free energy numerically for various d̃ and representative results are

given in figures 9 and 11. The behaviour of the action versus temperature in figure 9

for d̃ = 10−4/4 is nearly identical to that for d̃ = 0 — we refer the interested reader to

compare with the plots presented in [1, 7]. The results for d̃ = 10−4/4 are typical for

small values of d̃ with the classic ‘swallow tail’ shape. Of course, the crossing point of

the two branches coming in from small and large T marks the temperature of the phase

transition. By varying d̃, one can then map out the phase diagram shown above in figure 2.

A more detailed diagram is shown here in figure 10. We see here that the first order phase

transition occurs along a segment starting at Tfun/M̄ = .7658 at d̃ = 0 and ending at the

critical point at T ∗
fun/M̄ = .7629 and d̃∗ = 0.00315.

For completeness, we show some representative plots for large values of d̃ in figure 11,

where there is no crossing and no phase transition. Note that these plots show an apparent

divergence as T → 0 but this is a spurious effect in analogy to the discussion of the plots

for the chemical potential. This artifact is actually present in all of the free energy plots

but the width becomes very narrow at small d̃.

We now turn to the entropy density. This can be obtained by differentiating the

Helmholtz free energy density F (T, d) = T ĨE with respect to T as

S = −∂F

∂T
= −πL2 ∂F

∂u0

, (3.13)
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Figure 10: Phase diagram: Baryon density d̃ versus temperature T/M̄ .
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Figure 11: Legendre transform of the action, ĨD7, versus temperature for (a) d̃ = 10−1/4 and (b)

d̃ = 10. There is no phase transition for these values of d̃.

where we used the relation u0 = πL2T . Following the calculations described in [7], one must

carefully consider all of the implicit u0 dependence in (3.11). The only new contribution

comes here from the appearance of d̃ in (3.12) since from (2.16), we can see that

∂d̃

∂u0

= − 3

u0

d̃ . (3.14)

Gathering all the contributions, the entropy can be expressed as

S

N = −4G̃(m) + 24d̃2H(m) + (m2 − 1)2 − 6mc. (3.15)

Here we have defined the integral

H(m) =

∫ ∞

1

dρ
f
√

1 − χ2 + ρ2χ̇2

ρ3f̃2(1 − χ2)2

[
1 +

8d̃2

ρ6f̃3(1 − χ2)3

]−1/2

. (3.16)

Comparing this expression to eq. (2.22), we see that H = µ̃/2d̃. Hence we may write the

final result as
S

N = −4G̃(m) + 12 d̃µ̃ + (m2 − 1)2 − 6mc . (3.17)
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Figure 12: The entropy S/N versus temperature T/M̄ for d̃ = 10−4/4. The position of the phase

transition is marked by the dotted vertical line in the second figure.
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Figure 13: The entropy s/N versus temperature T/M̄ for (A) d̃ = 10−1/4 and (b) d̃ = 10.

We evaluated the entropy numerically for various d̃ and some typical results are given in

figures 12 and 13. The behaviour of the action versus temperature in figure 9 for d̃ = 10−4/4

is nearly identical to that for d̃ = 0. In particular, near the phase transition point, the curve

is multi-valued because there are several embeddings with the same values of d̃ and T/M̄ .

We refer the interested reader to compare with the plots presented in [1, 7]. Figure 13

shows the behaviour of the entropy for larger values of d̃ beyond the critical point.

The thermodynamic identity E = F + T S = T (ĨE + S) allows us to determine the

contribution of the D7-brane to the energy density:

E

NT
= −3G̃(m) + 12 d̃µ̃ +

3

4

[
(m2 − 1)2 − 20

3
mc

]
. (3.18)

While we did calculate E for many values of d̃, we do not present any plots here as

qualitatively their behaviour is similar to that in the plots of the entropy.

Finally, we turn to the thermodynamic stability of the system. There are various

ways to write the requirements for the intrinsic stability of our fixed-charge ensemble. We

investigated stability here with the conditions:

∂S

∂T
> 0 ,

∂µ

∂n
> 0 . (3.19)
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The first one requires that the system be stable against fluctuations in energy and seems to

be satisfied everywhere. The second constraint for electrical stability is more interesting,

as we found that it was not satisfied for all d̃ and T . Our investigations of the region of

instability remain preliminary, but figure 2 roughly illustrates the extent of the unstable

zone as the shaded (red) region. In particular, the line of the phase transition seems to

be part of the boundary of the unstable region between T ∗
fun and Tfun. This would indicate

that the black hole embeddings do not correctly describe the true ground state in this small

region and in particular, just below the phase transition. We hope to return to this matter

in the future. We comment more on the implications of the instability in the discussion

section below.

4. Discussion

Ref. [1] identified a universal, first order thermal phase transition in holographic Dp/Dq

systems. This was characterised by a jump of the Dq-branes between a Minkowski embed-

ding and a black hole embedding in the background of the black Dp-branes. In the gauge

theory this transition is associated to the melting of the mesons.

Here we have shown that Minkowski embeddings become inconsistent at any finite

baryon (or equivalently, quark) number density. The physical reason is that a non-zero

density which is dual to a worldvolume electric field translates into a finite number of strings

being dissolved into the Dq-branes. Hence the brane is not allowed to close off smoothly

as the strings cannot simply terminate. We considered the possibility of Minkowski-like

embeddings where the branes close off above the horizon and external fundamental strings

are attached at this point and extend down to the horizon. However, examining the forces

between the cusp in the brane embedding and the external strings, one finds that no

equilibrium configuration is possible. Rather the strings would pull the tip of the brane

down to meet the horizon. We note here though that this is not the only possibility for

a Minkowski-like embedding. One must simply attach a source for the strings and one

obvious alternative for such source is the baryon vertex [22]. In a Dp-brane background,

the baryon vertex consists of a D(8–p)-brane wrapping the internal S8−p. Hence it may be

that there is a family of Minkowski-like embeddings, where a gas of baryons absorbs the

strings dissolved on the probe branes. It would be interesting to investigate this possibility

further.

On the other hand, we did find that with any non-zero baryon density nb, black hole

embeddings where the Dq-branes intersect the horizon exist for all values of the temper-

ature. In contrast, such embeddings do not exist below a certain temperature for nb = 0

and the system must be described by a Minkowski embedding beyond this point. In any

event, we focused here on studying the behaviour of the black hole embeddings at finite

nb in the specific example of the D3/D7 system. Our results indicate that the physics

is essentially continuous around nb = 0. The reason is that black hole embeddings with

very small nb mimic the behaviour of both nb = 0 Minkowski embeddings and nb = 0

black hole embeddings. Moreover, the near-horizon analysis strongly suggested that the

universal phase transition found in [1] should persist for sufficiently small baryon densities,
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but that it should cease to exist above some critical value nb = n∗
b. This was confirmed

by our detailed numerical analysis for the D3/D7 system. We emphasize though that the

transition at small baryon density occurs between two black hole embeddings.

At zero baryon number density, the spectrum on Minkowski embeddings consists of a

gapped, discrete set of stable mesons (in the large-Nc, strong coupling limit), together with

stable, massive, free constituent quarks [1, 7]. Instead, mesons on black hole embeddings

have melted and and the spectrum is continuous and gapless. In fact, little evidence of the

previously stable states remains in this continuous spectrum [29]. In addition, constituent

quarks are massless. In the presence of a non-zero baryon density, all embeddings are of

black hole type and hence no strictly stable mesons exist. Note, however, that the decay

width is very small if the quark mass is very large, or if the meson is very heavy. Indeed,

the decay width of a meson is proportional to the support of its wave function on the

near-axis region where the spike attaches to the branes. This region becomes small as the

quark mass increases. Alternatively, the peak of the meson wave function occurs further

and further away from the axis as the meson mass increases — which, for fixed quark mass,

can be achieved by, for example, increasing the meson radial quantum number. We plan

to study these issues in more detail elsewhere.

Similarly, it may seem that the free constituent quarks represent a puzzle in this

framework. Recall that the dual gauge theory is deconfined and so free quarks should

play a role, in particular since we introduce a chemical potential. The analysis at nb = 0

suggests that at least at low temperatures a constituent quark is dual to a string extending

from the horizon to the brane (at large radius). However, at finite nb, our embeddings are

all of the black hole type and so if we attach such a string to the brane, it will quickly slip

away behind the horizon. Hence the puzzle is: How do the D7-branes capture the physics

of a gas of constituent quarks at low temperatures when there are no stable excitations

corresponding to macroscopic strings?

Of course, the resolution of this puzzle is provided by the analysis in subsection 2.4.

The near-horizon analysis of the Dp/Dq system suggested that, for any value of the baryon

density, there should exist Dq-brane embeddings which resemble closely Minkowski em-

beddings everywhere except for a long thin spike stretching all the way down to the black

Dp-branes horizon. This was confirmed for the D3/D7 case by our numerical results, which

demonstrate that such embeddings correspond to large quark masses (or low temperatures).

Further, we showed that not only do these spikes match the tension of a bundle of funda-

mental strings, but also their dynamics. Hence these spikes provide a brane realisation of

the desired gas of constituent quarks. Since the fields describing the D7-branes are dual

to meson operators (i.e., operators with nq = 0) in the gauge theory, we may say that, in

a very precise sense, quarks are being built out of mesons here, in the limit of large quark

masses.

In considering the discussion above, one must remember that part of our phase dia-

gram 2 corresponds to unstable embeddings. In particular, the line of the phase transition

seems to be part of the boundary of the unstable region. This would indicate that the

black hole embeddings do not correctly describe the true ground state of the phase im-

mediately below the phase transition. Hence while one should not doubt the existence
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of a phase transition, the precise location of the transition can be called into question.

Recall however, that for small d̃ 6= 0 the behaviour of the black hole embeddings matched

everywhere the known behaviour of the system with d̃ = 0 very closely, as illustrated in

figure 5. Hence we expect that the true line of phase transitions must be very close to that

indicated in figure 10 for small d̃ but it may deviate to the right at larger values of d̃. We

also reiterate that we are still refining our results on the boundary of the unstable region

and that figure 2 only gives a qualitative representation beyond T ∗
fun

. It may also be that

the region below the phase transition line very close to Tfun is stable.

The instability arises in the region where

(
∂µ

∂nb

)

T

=

(
∂2F

∂n2
b

)

T

< 0 . (4.1)

It would of course be interesting to identify what the stable ground state is in this region.

One indication comes from the nature of the instability itself. In the region where (4.1)

holds the free energy F is a concave function of the baryon density, which means that the

system can lower its free energy by separating into two phases with densities n1
b < nb < n2

b

such that

γn1
b
+ (1 − γ)n2

b
= nb , γF (n1

b
) + (1 − γ)F (n2

b
) < F (nb) . (4.2)

One way in which this would be realised in the gravity description would be that it becomes

thermodynamically favourable for the Nf D-brane probes to distribute the U(1)q charge

unequally among constituent branes, presumably through some mechanism involving the

non-Abelian nature of their dynamics. This would imply that the flavour symmetry is

spontaneously broken in the infrared. Alternatively, such a separation in different-nb phases

may be realised by going to a spatially inhomogeneous phase where nb varies from point

to point. Either of these speculative possibilities would imply that the flavour symmetry

is spontaneously broken in the infrared. The Minkowski-like embeddings carrying a gas

of baryons may play a role in this regime. We would also note that at this point, it is

not clear whether or not other phases or embeddings will also play a role beyond the

region of instability. In particular, we suspect that a new phase may appear at very low

temperatures.

In this paper we have concentrated on the phase structure of gauge theories at constant

temperature and charge density, namely on their description in the canonical ensemble. It

will be interesting to consider the phase structure of these theories in the grand canonical

ensemble, i.e., as a function of the temperature and the chemical potential. This should

be particularly interesting in terms of a potential comparison with the phase structure of

QCD. However, it is important to keep in mind that much of the interesting physics in QCD

at finite density — see, e.g., [30] — is associated to the fact that baryon number in QCD

is only carried by fermionic fields (quarks). This leads to the existence of a Fermi surface

at finite chemical potential. In gauge theories dual to Dp/Dq systems as those considered

here, baryon number is also carried by scalar fields, and so the physics at finite chemical

potential is likely to be very different. In particular, a chemical potential for charged

scalars acts effectively as a negative mass squared. In the case of free massless scalars this
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leads to an instability. The theories considered here, however, contain interaction, quartic

terms in the fundamental scalars, and so the chemical potential will presumably lead to

condensation of the scalars if these are sufficiently light.
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A. Holographic dictionary

As described in section 2, the D7-brane embeddings are characterized by two nontrivial

functions, χ(ρ) and At(ρ). Further, as usual in AdS/CFT-like dualities, the asymptotic

behaviour of these fields has a direct translation in terms of operators in the dual gauge

theory [3]. In particular, considering the asymptotic behaviour in eqs. (2.12) and (2.18),

the leading term corresponds to the non-normalizable mode and its amplitude indicates

the coefficient with which the operator is added to the microscopic Lagrangian of the

field theory. Similarly, the subleading term is the normalizable mode and its amplitude is

proportional to the vacuum expectation value of the operator. In the present case, since

we are discussing worldvolume fields, the corresponding operators involve fundamental

hypermultiplet fields.

Let us remind the reader that a hypermultiplet consists of two Weyl fermions ψ, ψ̃ and

two complex scalars q, q̃ – the quarks of our theory. These are naturally organized so that

ψ and q transform in the fundamental of the SU(Nc) gauge group, while ψ̃ and q̃ transform

in the antifundamental. Further, with Nf flavours (of equal mass), the hypermultiplets

transform under a global U(Nf) ' SU(Nf) × U(1)q symmetry. The charges of the fields

under the diagonal U(1)q are +1 for ψ and q and –1 for ψ̃ and q̃. Hence the U(1)q charge

naturally counts the net number of quarks in a given state. As the colour group is SU(Nc),

baryons are composed of Nc quarks and so we would divide by Nc for the number of baryons.

Now the operators dual to χ(ρ) and At(ρ) can be determined by considering the in-

teractions of the open strings on the D3/D7 array (2.5) before the decoupling limit [32], in
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analogy with the closed strings. Such an exercise leads to the following two operators:

At ↔ Oq = ψ†ψ + ψ̃ψ̃† + i(q†Dtq − (Dtq)
†q) + i(q̃ (Dtq̃)

† −Dtq̃ q̃†) .

χ ↔ Om = iψ̃ψ + q̃(Mq +
√

2Φ)q̃† + q†(Mq +
√

2Φ)q + h.c. , (A.1)

Recall that the global flavour symmetry discussed above is the U(Nf) gauge symmetry of

the Nf D7-brane worldvolume. Hence Oq is simply the quark charge density, i.e., the time

component of the conserved U(1)q current gauged by Aµ on the D7-brane. Note that the

Dt indicate covariant time derivatives in the SU(Nc) gauge theory. The operator Om is the

variation of the mass term in the microscopic Lagrangian, i.e. Om = −∂MqL. Note that Φ,

one of the adjoint scalars in the N = 4 supermultiplet, as well as Mq, appear in the scalar

terms here after solving for the auxiliary field constraints within the full coupled theory. As

a check, one can observe that both of these operators have conformal dimension12 ∆ = 3,

which matches the standard prescription for the asymptotic powers appearing in eqs. (2.12)

and (2.18).

Now we can make the dictionary between the asymptotic coefficients and the dual

gauge theory parameters precise by realizing that the hypermultiplet states are the ground

states of the 3-7 and 7-3 strings. Hence in the decoupling limit, these become precisely

strings stretching between the D7-brane and the horizon of the D3-brane. For example, the

quark mass is trivially derived for the brane array (2.5) in asymptotically flat space. As

this brane configuration is supersymmetric at T = 0, this mass persists in the decoupling

limit, where it is again the energy of a string stretching between the D3- and D7-branes.

This gives a relation between Mq and the parameter m appearing in eq. (2.18). Further

this relation is inherited by the theory at finite temperature, since setting T 6= 0 does not

alter the asymptotic properties that determine the gauge theory parameters.13 Using this

result, we can formulate a variational argument [11] to relate the second coefficient in the

asymptotic expanision of χ to the field theory condensate 〈i(ψ̃ψ−ψ†ψ̃†)〉.14 As the details

of this analysis can be found elsewhere [11, 7],15 we simply present the results:

Mq = u0

23/2π`2s
m 〈ψ̃ψ〉 = −23/2π3`2

s NfTD7u
3
0 c

= 1

2

√
λ T m = −1

8

√
λNf NcT

3 c . (A.2)

Given this result, we note that various figures were plotted in terms of T/M̄ ≡ 1/m and

hence the relevant mass scale in these plots is M̄ = 2Mq/
√

λ. Up to a factor of 2π, this

corresponds to the mass gap in the meson spectrum (at d = 0) [34, 35].

12This dimension applies in the UV where the effects of quark mass are negligible and the theory becomes

conformal.
13Note that here we are referring to the bare or current quark mass. The constituent quark mass is

certainly modified by thermal effects, as calculated in [7, 33].
14Ref. [11] argued that the scalars would not contribute to the condensate. In writing eq. (A.2), we

have certainly ignored such scalar terms. However, strong coupling infrared dynamics might generate a

condensate for the scalars. See [7] for an interesting example where the scalars dominate this expectation

value at high temperatures.
15Note that the factor of Nf in the formulae for 〈ψ̃ψ〉 was overlooked in [1]. Further [11] only considers

the case Nf = 1. A full analysis appears in [7].
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Now let us turn to the relation between the D7-brane gauge field and the quark-charge

operator (A.1). Here the asymptotic value of the potential At(∞) is proportional to the

coefficient with which the charge density Oq enters the microscopic Lagrangian. This

operator is normalized so that acting on a particular state it yields exactly the net quark

density, and therefore the corresponding coefficient is precisely the chemical potential µ for

the quarks. Similarly the relevant expectation value is the quark density nq = 〈Oq〉.
Next we provide a precise definition of the particle density on the string side of the

duality. First, recall that the electric field on the worldvolume can be thought of as arising

from fundamental strings ‘dissolved’ into the the D7-brane [20]. The density of these

strings can be determined from the local charge density for the two-form B-field. The

standard convention is that the fundamental string couples to the NS two-form through

the worldsheet interaction Tf

∫
d2σ B. Hence a string pointing along the xi-axis sources Bti

with the charge being just the string tension Tf = 1/(2π`2
s
). Further, the one-form gauge

invariance of B requires that the D7-brane action only involves the combination B+2π`2
s F .

Hence we have
δID7

δBti
=

1

2π`2
s

δID7

δFti
. (A.3)

Combining these observations, we first conclude that since the D7-brane carries an elec-

tric field in the % direction, the worldvolume effectively contains strings stretching along

the radial direction with a density precisely determined by the electric displacement

d = −δID7/δFt%. The minus sign in the last expression means that for positive d the

strings are oriented to be inward pointing towards the horizon at % = 1. Since the number

of strings corresponds precisely to the number of quarks in the field theory, the density

of quarks is given by integrating the string density on the D7-branes over the internal

three-sphere:

nq =

∫
dΩ3 d = 2π2 d . (A.4)

While d is not precisely the coefficient of the normalizable mode in eq. (2.12), the two

satisfy the simple relation given in eq. (2.14).

As noted above, the non-normalizable mode At(∞) indicates that the charge density

operator Oq enters the microscopic Lagrangian. As we wish to relate this bulk mode to

the chemical potential µ for the quarks in the microscopic theory, it is natural to frame the

discussion in terms of the grand canonical ensemble. There the chemical potential enters

the partition function as

exp

[
−β

∫
d3xW (β, µ)

]
≡

∑
exp

[
−β

∫
d3x (H− µOq)

]
(A.5)

where a sum over all states is denoted on the right hand side. Of course, W (β, µ) and H are

the Gibbs free energy and Hamiltonian densities, respectively. We know that µ ∝ At(∞)

but we would like to determine the exact constant of proportionality. Towards this end,

we note that, as can be seen from eq. (A.5),

δW

δµ
= −〈Oq 〉 = −nq . (A.6)
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To compare to the string description, we turn to the semiclassical analysis of the Euclidean

supergravity path integral, as described in section 3. The grand canonical ensemble is

represented by the usual path integral with fixed At(∞) and the on-shell action gives the

leading contribution to the Gibbs free energy, i.e., IE = β W . Hence to compare to eq. (A.6),

we need to evaluate the change of the on-shell D7-brane action induced by a change of the

boundary value At(∞). Hence given the worldvolume action (2.10), the desired variation

is given by

δW =

∫
d% dΩ3 δLE = 2π2

∫ ∞

1

d%
δLE

δ∂%At
∂%δAt , (A.7)

where L is the D7-brane Lagrangian density. In eq. (A.7), we have only integrated over

the internal three-sphere and the radial direction to produce the free energy density in

the gauge theory directions. Once again we recognize the first factor as d = δL/δ∂ρAt =

−δLE/δ∂ρAt (in the current notation — note that we need to distinguish between the

‘Lagrangian’ densities appearing in the Minkowski (2.10) and Euclidean (3.1) actions),

which is a constant on-shell. Hence eq. (A.7) reduces to

δW = −2π2 d (δAt(∞) − δAt(1)) = −nq δAt(∞) (A.8)

where we used (A.4) and the fact that At always vanishes on the horizon so that we must

have δAt(1) = 0. Finally comparing eqs. (A.6) and (A.8), we find

At(∞) = µ , (A.9)

and so, as anticipated in the main text, the constant part of the asymptotic gauge potential

is precisely the chemical potential for the quarks. If we wish to express results in terms of

a baryon chemical potential, we would convert µb = Nc µ.

Let us also recall the formulae for the dimensionless quantities defined in eqs. (2.16)

and (2.19) and which appear in our calculations:

µ̃ =
2π`2

s µ

u0

=

√
2

λ

µ

T
, (A.10)

d̃ =
d

2π`2
s u

3
0
NfTD7

=
25/2

NfNcλ1/2

nq

T 3
=

25/2

Nfλ1/2

nb

T 3
. (A.11)

Hence as with the previous definitions, the temperature T provides the scale to make these

quantities dimensionless but implicitly we have also introduced interesting factors of the ’t

Hooft coupling, as well as of Nf and Nc. In particular, we see that d̃ is naturally related to

the expectation value of the baryon number nb in (A.11).
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